Empirical Software Engineering Models: Can They Become the Equivalent of Physical Laws in Traditional Engineering?
نویسنده
چکیده
Traditional engineering disciplines such as mechanical and electrical engineering are guided by physical laws. They provide the constraints for acceptable engineering solutions by enforcing regularity and thereby limiting complexity. Violations of physical laws can be experienced instantly in the lab. Software engineering is not constrained by physical laws. Consequently, we often create software artifacts which are too complex to be understood, tested or maintained. As too complex software solutions may even work initially, we are tempted to believe that no laws apply. We only learn about the violation of some form of “cognitive laws” late during development or during maintenance, when too high complexity inflicts follow-up defects or increases maintenance costs. Initial work by Barry Boehm (e.g., CoCoMo) aimed at predicting and controlling software project costs based on estimated software size. Through innovative life cycle process models (e.g., Spiral model) Barry Boehm also provided the basis for incremental risk evaluation and adjustment of such predictions. The proposal in this paper is to work towards a scientific basis for software engineering by capturing more such time-lagging dependencies among software artifacts in the form of empirical models and thereby making developers aware of so-called “cognitive laws” that must be adhered to. This paper attempts to answer the questions why we need software engineering laws and how they could look like, how we have to organize our discipline in order to build up software engineering laws, what such laws already exist and how we could develop further laws, how such laws could contribute to the maturing of science and engineering of software in the future, and what the remaining challenges are for teaching, research, and practice in the future.
منابع مشابه
2D inversion of gravity data in bedrock identification (case study: a part of Qotrum plain in Yazd province)
Introduction The gravity method measures the vertical component of the acceleration at the Earth’s surface. The earth’s gravity field is affected by the density of different rocks and structures. Therefore, this method can be used in mineral exploration or studying the subsurface cavities and structures such as bedrocks, channels, and dikes. Inverse modeling is useful in understanding the p...
متن کاملA Correlation for Estimating LCPC Abrasivity Coefficient using Rock Properties
Rock abrasivity, as one of the most important parameters affecting the rock drillability, significantly influences the drilling rate in mines. Therefore, rock abrasivity should be carefully evaluated prior to selecting and employing drilling machines. Since the tests for a rock abrasivity assessment require sophisticated laboratory equipment, empirical models can be used to predict rock a...
متن کاملGeneralization of Decomposed Integration Methods for Cost Effective Heat Exchanger Networks with Multiple Cost Laws
At many circumstances, in heat exchange processes several exchangers were used with different cost laws due to their pressure ratings, materials of construction and exchange3r types. In such circumstances traditional methods of pinch technology can not be led to minimum total annual cost may cause some other disadvantages like more complexity or higher maintenance. In this research work a n...
متن کاملA New Empirical Model to Increase the Accuracy of Software Cost Estimation (TECHNICAL NOTE)
We can say a software project is successful when it is delivered on time, within the budget and maintaining the required quality. However, nowadays software cost estimation is a critical issue for the advance software industry. As the modern software’s behaves dynamically so estimation of the effort and cost is significantly difficult. Since last 30 years, more than 20 models are already develo...
متن کاملPresentation of Empirical Relation for the Fundamental Period of Irregular Steel Frames with EBF Steel Braces
Developments in the field of Structure and Earthquake Engineering and also consequences of earthquakes have been led to develop some continually changes and improvement of seismic regulations around the world. In regards to seismicity of Iran, it is necessary and also possible to review and edit the Seismic Regulations of Iran and compare it with the other countries; so it seems that a comparat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Int. J. Software and Informatics
دوره 5 شماره
صفحات -
تاریخ انتشار 2011